Application of Entropy Measures on Intrinsic Mode Functions for the Automated Identification of Focal Electroencephalogram Signals
نویسندگان
چکیده
The brain is a complex structure made up of interconnected neurons, and its electrical activities can be evaluated using electroencephalogram (EEG) signals. The characteristics of the brain area affected by partial epilepsy can be studied using focal and non-focal EEG signals. In this work, a method for the classification of focal and non-focal EEG signals is presented using entropy measures. These entropy measures can be useful in assessing the nonlinear interrelation and complexity of focal and non-focal EEG signals. These EEG signals are first decomposed using the empirical mode decomposition (EMD) method to extract intrinsic mode functions (IMFs). The entropy features, namely, average Shannon entropy (ShEnAvg), average Renyi’s entropy (RenEnAvg), average approximate entropy (ApEnAvg), average sample entropy (SpEnAvg) and average phase entropies (S1Avg and S2Avg), are computed from different IMFs of focal and non-focal EEG signals. These entropies are used as the input feature set for the least squares support vector machine (LS-SVM) classifier to classify into focal and non-focal EEG signals. Experimental results show that our proposed method is able to differentiate the focal and non-focal EEG signals with an average classification accuracy of 87% correct.
منابع مشابه
An Integrated Index for the Identification of Focal Electroencephalogram Signals Using Discrete Wavelet Transform and Entropy Measures
The dynamics of brain area influenced by focal epilepsy can be studied using focal and non-focal electroencephalogram (EEG) signals. This paper presents a new method to detect focal and non-focal EEG signals based on an integrated index, termed the focal and non-focal index (FNFI), developed using discrete wavelet transform (DWT) and entropy features. The DWT decomposes the EEG signals up to si...
متن کاملIdentification of Nonlinear Modal Interactions in a Beam-Mass-Spring-Damper System based on Mono-Frequency Vibration Response
In this paper, nonlinear modal interactions caused by one-to-three internal resonance in a beam-mass-spring-damper system are investigated based on nonlinear system identification. For this purpose, the equations governing the transverse vibrations of the beam and mass are analyzed via the multiple scale method and the vibration response of the system under primary resonance is extracted. Then,...
متن کاملDetection of schizophrenia patients using convolutional neural networks from brain effective connectivity maps of electroencephalogram signals
Background: Schizophrenia is a mental disorder that severely affects the perception and relations of individuals. Nowadays, this disease is diagnosed by psychiatrists based on psychiatric tests, which is highly dependent on their experience and knowledge. This study aimed to design a fully automated framework for the diagnosis of schizophrenia from electroencephalogram signals using advanced de...
متن کاملA novel method based on a combination of deep learning algorithm and fuzzy intelligent functions in order to classification of power quality disturbances in power systems
Automatic classification of power quality disturbances is the foundation to deal with power quality problem. From the traditional point of view, the identification process of power quality disturbances should be divided into three independent stages: signal analysis, feature selection and classification. However, there are some inherent defects in signal analysis and the procedure of manual fe...
متن کاملDevelopment of a Unique Biometric-based Cryptographic Key Generation with Repeatability using Brain Signals
Network security is very important when sending confidential data through the network. Cryptography is the science of hiding information, and a combination of cryptography solutions with cognitive science starts a new branch called cognitive cryptography that guarantee the confidentiality and integrity of the data. Brain signals as a biometric indicator can convert to a binary code which can be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 17 شماره
صفحات -
تاریخ انتشار 2015